top of page

№ 220 - Quantum Science & Technologies Division


Quantum Information Science is a rapidly growing interdisciplinary field at the intersection of physics, mathematics and computer science. It employs the fundamental properties of quantum systems — coherent superposition, entanglement and quantum parallelism — to advance Quantum Technologies and realize practical devices and applications for quantum simulations and computing, communication and cryptography, sensing and metrology, microscopic engines and refrigerators.


The members of our Group have been actively involved in research and teaching Quantum Physics and Quantum Information to advance Quantum Technologies in Armenia.




Research Quantum thermodynamics studies information and energy flow on the micro/nanoscale. It uses microscopic and mesoscopic quantum physics to describe systems traditionally treated with statistical physics and thermodynamics. It aims to understand the emergence of fundamental properties of thermodynamic systems from quantum principles and to design and implement quantum motors, engines and refrigerators for various practical applications. Emphasizing a joint description of energy (work, efficiency, heat, temperature) and information (purity, entropy, entanglement, correlations) distinguishes this subject in the broader context of quantum information science. We were among the pioneers of quantum thermodynamics [1], and recently, we have been working on bringing quantum thermodynamic ideas into classical physics [2,3,4,5]. Quantum foundations is a research subject that identifies and scrutinizes open conceptual problems of quantum mechanics (also from within quantum mechanics) and points directions towards more general (subquantum) theories. We studied two types of such conceptual problems. First, quantum measurement [6], viz. how the classical probability space emerges for measurement results, Born’s rule is explained etc. Second, the problem of joint probability for non-commuting observables, e.g. coordinate and momentum. This problem is closely related to almost any other conceptual issue of quantum mechanics, from Bell’s inequalities (which can be reformulated as solely a joint probability issue) to quantum tomography, consistent histories, Wigner functions, weak measurements etc. Here we introduced the concept of imprecise quantum and joint probability and worked out its consequences, e.g. for the (non)locality issue [7,8].

Outreach We actively popularize the field of science in Armenia through seminars and lecture courses, both at the introductory level and on advanced topics, such as Quantum Statistical Thermodynamics and Quantum Optics and Quantum Information. Our Guide and Tutorials on various quantum computing algorithms can be helpful to researchers who want to enter the area of Quantum Computation and Quantum Information Science. Hakob teaches a course on “Introduction to quantum computing” at the American University of Armenia as a hands-on course to program a quantum. We encourage other Armenian universities to offer classes on quantum computing, quantum cryptography, quantum optics, special topics in modern quantum mechanics and other emerging issues in quantum information science. Teaching these subjects will better prepare Armenian students for the Second Quantum Revolution. If you are a student or a researcher interested in quantum technologies, please get in touch.

Publications A.E. Allahverdyan

  1. A.E. Allahverdyan and Th.M. Nieuwenhuizen, Extraction of work from a single thermal bath in the quantum regime, Phys. Rev. Lett. 85, 1799, (2000).

  2. A.E. Allahverdyan and D. Karakhanyan, Defining the work on an electromagnetic field, Phys. Rev. Lett. 121, 240602 (2018).

  3. E. Allahverdyan and N.H. Martirosyan, Free energy for non-equilibrium quasi-stationary states, EPL (Europhysics Letters) 117, 50004 (2017).

  4. E. Allahverdyan, S.G. Babajanyan, N.H. Martirosyan, and A. V. Melkikh, Adaptive Heat Engine, Phys. Rev. Lett. 117, 30601 (2016).

  5. A.E. Allahverdyan, Work-extraction from the fluid flow: the analogue of Carnot's efficiency, arXiv:2002.09276 [physics. flu-dyn] (2020).

  6. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen, Understanding quantum measurement from the solution of dynamical models, Physics Reports, 525, 1-166 (2013).

  7. E. Allahverdyan and A. Danageozian, Quantum non-locality co-exists with locality, EPL (Europhysics Letters), 122, 40005 (2018).

  8. A.E. Allahverdyan and A. Danageozian, Excluding joint probabilities from quantum theory, Phys. Rev. A 97, 030102(R) (2018).

  1. H. Avetisyan, C. H. Monken, Mode analysis of higher-order transverse-mode correlation beams in turbulent atmosphere, Opt. Lett. 42, 101, (2017).

  2. H. Avetisyan, C. H. Monken, Higher order correlation beams in the atmosphere under strong turbulence conditions, Opt. Express 24, 2318 (2016).

  1. D. Lacroix, V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, and A.A. Hovhannisyan, Non-Markovian modelling of Fermi-Bose systems coupled to one or several Fermi-Bose thermal baths, Phys. Rev. A 102, 022209 (2020).

  2. A.A. Hovhannisyan, V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, and D. Lacroix, Asymptotic equilibrium in the quantum system fully coupled simultaneously to mixed fermionic–bosonic heat baths, Physica A 545, 123653 (2020).

  3. A.A. Hovhannisyan, V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, and D. Lacroix, Non-Markovian dynamics of quantum systems coupled with several mixed fermionic-bosonic heat baths, Phys. Rev. E 101, 062115 (2020).

  4. V.V. Sargsyan, A.A. Hovhannisyan, G.G. Adamian, N.V. Antonenko, and D. Lacroix, Non-Markovian dynamics of mixed fermionic–bosonic systems: Full coupling, Physica A 505, 666-679 (2018).

  5. A.A. Hovhannisyan, V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, and D. Lacroix, Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths, Phys. Rev. E 97, 032134 (2018).

  1. A. Pozas-Kerstjens, E.G. Brown, K.V. Hovhannisyan, New J. Phys. 20, 043034 (2018).

  2. K.V. Hovhannisyan, A. Imparato, New J. Phys. 21, 052001 (2019).

  3. K.V. Hovhannisyan, F. Barra, A. Imparato, arXiv:2001.07696 (2020).

  4. M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acín, Phys. Rev. Lett. 118, 070601 (2017).

  5. K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Phys. Rev. Lett. 111, 240401 (2013).

  6. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).

  7. L.A. Correa, M. Perarnau-Llobet, K.V. Hovhannisyan, S. Hernández-Santana, M. Mehboudi, A. Sanpera, Phys. Rev. A 96, 062103 (2017).

  8. K.V. Hovhannisyan, L.A. Correa, Phys. Rev. B 98, 045101 (2018).

  1. D.Karakhanyan, R. Kirschner, Spinorial R operator and Algebraic Bethe Ansatz, Nucl. Phys. B 951, 102-126 (2020).

  2. D.Karakhanyan, R. Kirschner, Orthogonal and symplectic Yangians - linear and quadratic evaluations, Nucl. Phys. B 933, 14-39 (2018).

  3. J. Fuksa, A.P. Isaev, D. Karakhanyan, R. Kirschner, Yangians and Yang–Baxter R-operators for ortho-symplectic superalgebras, Nucl. Phys. B 917, 44-85 (2017).

  4. A.P. Isaev, D. Karakhanyan, R. Kirschner, Orthogonal and symplectic Yangians and Yang-Baxter R-operators, Nucl. Phys. B 904, 124-147 (2016).

  5. T. Hakobyan, D. Karakhanyan, O. Lechtenfeld, The structure of invariants in conformal mechanics, Nucl. Phys. B 886, 399-420 (2014).

  1. P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information, Springer, Berlin, 2007 (eBook).

  2. D. Petrosyan, Quantum gates and simulations with strongly interacting Rydberg atoms, ERCIM News 112, 31 (2018).

  3. S. Christensen, S. E. Rasmussen, D. Petrosyan, N. T. Zinner, Coherent router for quantum networks with superconducting qubits, Phys. Rev. Research 2, 013004 (2020).

  4. V. Marchukov, A. G. Volosniev, M. Valiente, D. Petrosyan, N. T. Zinner, Quantum spin transistor with a Heisenberg spin chain, Nature Commun. 7, 13070 (2016).

  5. D. Petrosyan, K. Mølmer, J. Fortágh, M. Saffman, Microwave to optical conversion with atoms on a superconducting chip, New J. Phys. 21, 073033 (2019).

  6. L. Sarkany, J. Fortagh, D. Petrosyan, Long-range quantum gate via Rydberg states of atoms in a thermal microwave cavity, Phys. Rev. A 92, 030303(R) (2015).

  7. M. Stecker, R. Nold, L.-M. Steinert, J. Grimmel, D. Petrosyan, J. Fortágh, A. Günther, Controlling the dipole blockade and ionization rate of Rydberg atoms in strong electric fields, Phys. Rev. Lett. 125, 103602 (2020).

  8. G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, J. Schmiedmayer, Quantum technologies with hybrid systems, PNAS 112, 3866 (2015).

  1. D.B. Saakian and C. K. Hu, Exact solution of the Eigen model with general fitness functions and degradation rates, PNAS 103, 4935 (2006).

  2. D.B. Saakian, O. Rozanova, A. Akmetzhanov, Dynamics of the Eigen and the Crow-Kimura models for molecular evolution, Phys. Rev. E 78, 041908 (2008).

  3. G. R. Huang, D.B. Saakian, C.K. Hu, Accurate analytic solution of chemical master equations for gene regulatory networks in a single cell, Phys. Rev. E 97, 012412 (2018).

  4. D.B. Saakian, V. Galstyan, Dynamics of the chemical master equation, a strip of chains of equations in d-dimensional space, Phys. Rev. E 86, 011125 (2012).

  5. D.B. Saakian, Error threshold in optimal coding, numerical criteria, and classes of universalities for complexity, Phys. Rev. E 71, 016126 (2005).

  6. D.B. Saakian, Phase structure of string theory and the Random Energy Model, J. of Stat. Mech. Theory and Experiment 2009(07), P07003 (2009).

  7. D.B. Saakian, Semianalytical solution of the random-product problem of matrices and discrete-time random evolution, Phys. Rev. E 98, 062115 (2018).

  8. D.B. Saakian, Exact solution of the hidden Markov processes, Phys. Rev. E 96, 052112 (2017).

  9. D.B. Saakian, Statistical mechanics and financial markets: Antagony between derivatives and market self-regulation, Chinese J. Phys 56, 988 (2018).

  1. S. Bellucci, A. A. Saharian, H. G. Sargsyan, and V. V. Vardanyan, Phys. Rev. D 101, 045020 (2020).

  2. A. A. Saharian, H. G. Sargsyan, Astrophysics 61, 375-390 (2018) .

  3. S. Bellucci, I. Brevik, A. A. Saharian, H. G. Sargsyan, Eur. Phys. J. C 80, 281 (2020) .

  1. V.A. Stepanyan, A.A. Hayrapetyan, E.S. Mamasakhlisov, The Rouse Model of Viscoelasticity and Diffusion Behavior of Chromatin, J. Contemp. Phys. 55 254 (2020).

  2. V.A. Stepanyan, S.G. Khachatryan, S.A. Hovhannisyan, Thermodynamics of Physical Approximations to Non-Deterministic Polynomial Complete Problems.

  3. S.G. Khachatryan, S.A. Hovhannisyan, V.A. Stepanyan, Quantum Classification of Even and Odd Functions and Quantum State Discrimination.


bottom of page